Which dataset
would you like to
analyze in BBrowser?

Reconstructed Single-Cell Fate Trajectories Define Lineage Plasticity Windows during Differentiation of Human PSC-Derived Distal Lung Progenitors (Long-term culture of alveolospheres)

Killian Hurley, Jun Ding, Carlos Villacorta-Martin, Michael J Herriges, Anjali Jacob, Marall Vedaie, Konstantinos D Alysandratos, Yuliang L Sun, Chieh Lin, Rhiannon B Werder, Jessie Huang, Andrew A Wilson, Aditya Mithal, Gustavo Mostoslavsky, Irene Oglesby, Ignacio S Caballero, Susan H Guttentag, Farida Ahangari, Naftali Kaminski, Alejo Rodriguez-Fraticelli, Fernando Camargo, Ziv Bar-Joseph, Darrell N Kotton

Alveolar epithelial type 2 cells (AEC2s) are the facultative progenitors responsible for maintaining lung alveoli throughout life but are difficult to isolate from patients. Here, we engineer AEC2s from human pluripotent stem cells (PSCs) in vitro and use time-series single-cell RNA sequencing with lentiviral barcoding to profile the kinetics of their differentiation in comparison to primary fetal and adult AEC2 benchmarks. We observe bifurcating cell-fate trajectories as primordial lung progenitors differentiate in vitro, with some progeny reaching their AEC2 fate target, while others diverge to alternative non-lung endodermal fates. We develop a Continuous State Hidden Markov model to identify the timing and type of signals, such as overexuberant Wnt responses, that induce some early multipotent NKX2-1+ progenitors to lose lung fate. Finally, we find that this initial developmental plasticity is regulatable and subsides over time, ultimately resulting in PSC-derived AEC2s that exhibit a stable phenotype and nearly limitless self-renewal capacity.

Download bbrowser to analyze now

Species: human
Number of cells: 1390
Number of downloads: 15
Study size: 48MB
Uploaded at:

Cell development 
Trajectories prediction