Which dataset would you like to analyze in BBrowser?

Dissecting intratumoral myeloid cell plasticity by single cell RNA‐seq

Tumor‐infiltrating myeloid cells are the most abundant leukocyte population within tumors. Molecular cues from the tumor microenvironment promote the differentiation of immature myeloid cells toward an immunosuppressive phenotype. However, the in situ dynamics of the transcriptional reprogramming underlying this process are poorly understood. Therefore, we applied single cell RNA‐seq (scRNA‐seq) to computationally investigate the cellular composition and transcriptional dynamics of tumor and adjacent normal tissues from 4 early‐stage non‐small cell lung cancer (NSCLC) patients. Our scRNA‐seq analyses identified 11 485 cells that varied in identity and gene expression traits between normal and tumor tissues. Among these, myeloid cell populations exhibited the most diverse changes between tumor and normal tissues, consistent with tumor‐mediated reprogramming. Through trajectory analysis, we identified a differentiation path from CD14+ monocytes to M2 macrophages (monocyte‐to‐M2). This differentiation path was reproducible across patients, accompanied by increased expression of genes (eg, MRC1/CD206, MSR1/CD204, PPARG, TREM2) with significantly enriched functions (Oxidative phosphorylation and P53 pathway) and decreased expression of genes (eg, CXCL2, IL1B) with significantly enriched functions (TNF‐α signaling via NF‐κB and inflammatory response). Our analysis further identified a co‐regulatory network implicating upstream transcription factors (JUN, NFKBIA) in monocyte‐to‐M2 differentiation, and activated ligand‐receptor interactions (eg, SFTPA1‐TLR2, ICAM1‐ITGAM) suggesting intratumoral mechanisms whereby epithelial cells stimulate monocyte‐to‐M2 differentiation. Overall, our study identified the prevalent monocyte‐to‐M2 differentiation in NSCLC, accompanied by an intricate transcriptional reprogramming mediated by specific transcriptional activators and intercellular crosstalk involving ligand‐receptor interactions.

Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics

Myeloid-derived suppressor cells (MDSCs) are innate immune cells that acquire the capacity to suppress adaptive immune responses during cancer. It remains elusive how MDSCs differ from their normal myeloid counterparts, which limits our ability to specifically detect and therapeutically target MDSCs during cancer. Here, we sought to determine the molecular features of breast cancer–associated MDSCs using the widely studied mouse model based on the mouse mammary tumor virus (MMTV) promoter–driven expression of the polyomavirus middle T oncoprotein (MMTV-PyMT). To identify MDSCs in an unbiased manner, we used single-cell RNA sequencing to compare MDSC-containing splenic myeloid cells from breast tumor–bearing mice with wild-type controls. Our computational analysis of 14,646 single-cell transcriptomes revealed that MDSCs emerge through an aberrant neutrophil maturation trajectory in the spleen that confers them an immunosuppressive cell state. We establish the MDSC-specific gene signature and identify CD84 as a surface marker for improved detection and enrichment of MDSCs in breast cancers.

Peripheral T cell expansion predicts tumour infiltration and clinical response

Despite the resounding clinical success in cancer treatment of antibodies that block the interaction of PD1 with its ligand PDL11, the mechanisms involved remain unknown. A major limitation to understanding the origin and fate of T cells in tumour immunity is the lack of quantitative information on the distribution of individual clonotypes of T cells in patients with cancer. Here, by performing deep single-cell sequencing of RNA and T cell receptors in patients with different types of cancer, we survey the profiles of various populations of T cells and T cell receptors in tumours, normal adjacent tissue, and peripheral blood. We find clear evidence of clonotypic expansion of effector-like T cells not only within the tumour but also in normal adjacent tissue. Patients with gene signatures of such clonotypic expansion respond best to anti-PDL1 therapy. Notably, expanded clonotypes found in the tumour and normal adjacent tissue can also typically be detected in peripheral blood, which suggests a convenient approach to patient identification. Analyses of our data together with several external datasets suggest that intratumoural T cells, especially in responsive patients, are replenished with fresh, non-exhausted replacement cells from sites outside the tumour, suggesting continued activity of the cancer immunity cycle in these patients, the acceleration of which may be associated with clinical response

(CITE-seq) Monocytic Subclones Confer Resistance to Venetoclax-Based Therapy in Acute Myeloid Leukemia Patients

Venetoclax-based therapy can induce responses in approximately 70% of older previously untreated acute myeloid leukemia (AML) patients. However, upfront resistance as well as relapse following initial response demonstrate the need for a deeper understanding of resistance mechanisms. In the present study, we report that responses to venetoclax + azacitidine in AML patients correlate closely with developmental stage, where phenotypically primitive AML is sensitive, but monocytic AML is more resistant. Mechanistically, resistant monocytic AML has a distinct transcriptome profile, loses expression of venetoclax target BCL2 and relies on MCL1 to mediate oxidative phosphorylation and survival. This differential sensitivity drives a selective process in patients which favors the outgrowth of monocytic subpopulations at relapse. Based on these findings, we conclude that resistance to venetoclax + azacitidine can arise due to biological properties intrinsic to monocytic differentiation. We propose that optimal AML therapies should be designed so as to independently target AML subclones that may arise at differing stages of pathogenesis.

Targeted pharmacological therapy restores β-cell function for diabetes remission

Dedifferentiation of insulin-secreting β cells in the islets of Langerhans has been proposed to be a major mechanism of β-cell dysfunction. Whether dedifferentiated β cells can be targeted by pharmacological intervention for diabetes remission, and ways in which this could be accomplished, are unknown as yet. Here we report the use of streptozotocin-induced diabetes to study β-cell dedifferentiation in mice. Single-cell RNA sequencing (scRNA-seq) of islets identified markers and pathways associated with β-cell dedifferentiation and dysfunction. Single and combinatorial pharmacology further show that insulin treatment triggers insulin receptor pathway activation in β cells and restores maturation and function for diabetes remission. Additional β-cell selective delivery of oestrogen by Glucagon-like peptide-1 (GLP-1–oestrogen conjugate) decreases daily insulin requirements by 60%, triggers oestrogen-specific activation of the endoplasmic-reticulum-associated protein degradation system, and further increases β-cell survival and regeneration. GLP-1–oestrogen also protects human β cells against cytokine-induced dysfunction. This study not only describes mechanisms of β-cell dedifferentiation and regeneration, but also reveals pharmacological entry points to target dedifferentiated β cells for diabetes remission.

Heterogeneity of Satellite Cells Implicates DELTA1/NOTCH2 Signaling in Self-Renewal

How satellite cells and their progenitors balance differentiation and self-renewal to achieve sustainable tissue regeneration is not well understood. A major roadblock to understanding satellite cell fate decisions has been the difficulty to study this process in vivo. By visualizing expression dynamics of myogenic transcription factors during early regeneration in vivo, we identified the time point at which cells undergo decisions to differentiate or self-renew. Single-cell RNA sequencing revealed heterogeneity of satellite cells during both muscle homeostasis and regeneration, including a subpopulation enriched in Notch2 receptor expression. Furthermore, we reveal that differentiating cells express the Dll1 ligand. Using antagonistic antibodies we demonstrate that the DLL1 and NOTCH2 signaling pair is required for satellite cell self-renewal. Thus, differentiating cells provide the self-renewing signal during regeneration, enabling proportional regeneration in response to injury while maintaining the satellite cell pool. These findings have implications for therapeutic control of muscle regeneration.

Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy

Chimeric antigen receptor (CAR) T-cell therapy has produced remarkable anti-tumor responses in patients with B-cell malignancies. However, clonal kinetics and transcriptional programs that regulate the fate of CAR-T cells after infusion remain poorly understood. Here we perform TCRB sequencing, integration site analysis, and single-cell RNA sequencing (scRNA-seq) to profile CD8+ CAR-T cells from infusion products (IPs) and blood of patients undergoing CD19 CAR-T immunotherapy. TCRB sequencing shows that clonal diversity of CAR-T cells is highest in the IPs and declines following infusion. We observe clones that display distinct patterns of clonal kinetics, making variable contributions to the CAR-T cell pool after infusion. Although integration site does not appear to be a key driver of clonal kinetics, scRNA-seq demonstrates that clones that expand after infusion mainly originate from infused clusters with higher expression of cytotoxicity and proliferation genes. Thus, we uncover transcriptional programs associated with CAR-T cell behavior after infusion.

Immune Landscape of Viral- and Carcinogen-Driven Head and Neck Cancer

Head and neck squamous cell carcinoma (HNSCC) arises through exposure to environmental carcinogens or malignant transformation by human papillomavirus (HPV). Here, we assessed the transcriptional profiles of 131,224 single cells from peripheral and intra-tumoral immune populations from patients with HPV– and HPV+ HNSCC and healthy donors. Immune cells within tumors of HPV– and HPV+ HNSCC displayed a spectrum of transcriptional signatures, with helper CD4+ T cells and B cells being relatively divergent and CD8+ T cells and CD4+ regulatory T cells being relatively similar. Transcriptional results were contextualized through multispectral immunofluorescence analyses and evaluating putative cell-cell communication based on spatial proximity. These analyses defined a gene expression signature associated with CD4+ T follicular helper cells that is associated with longer progression-free survival in HNSCC patients. The datasets and analytical approaches herein provide a resource for the further study of the impact of immune cells on viral- and carcinogen-induced cancers.

Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition

KRAS GTPases are activated in one-third of cancers, and KRAS(G12C) is one of the most common activating alterations in lung adenocarcinoma. KRAS(G12C) inhibitors are in phase-I clinical trials and early data show partial responses in nearly half of patients with lung cancer. How cancer cells bypass inhibition to prevent maximal response to therapy is not understood. Because KRAS(G12C) cycles between an active and inactive conformation4-6, and the inhibitors bind only to the latter, we tested whether isogenic cell populations respond in a non-uniform manner by studying the effect of treatment at a single-cell resolution. Here we report that, shortly after treatment, some cancer cells are sequestered in a quiescent state with low KRAS activity, whereas others bypass this effect to resume proliferation. This rapid divergent response occurs because some quiescent cells produce new KRAS(G12C) in response to suppressed mitogen-activated protein kinase output. New KRAS(G12C) is maintained in its active, drug-insensitive state by epidermal growth factor receptor and aurora kinase signalling. Cells without these adaptive changes-or cells in which these changes are pharmacologically inhibited-remain sensitive to drug treatment, because new KRAS(G12C) is either not available or exists in its inactive, drug-sensitive state. The direct targeting of KRAS oncoproteins has been a longstanding objective in precision oncology. Our study uncovers a flexible non-uniform fitness mechanism that enables groups of cells within a population to rapidly bypass the effect of treatment. This adaptive process must be overcome if we are to achieve complete and durable responses in the clinic

In vivo developmental trajectories of human podocyte inform in vitro differentiation of pluripotent stem cell-derived podocytes

The renal corpuscle of the kidney comprises a glomerular vasculature embraced by podocytes and supported by mesangial myofibroblasts, which ensure plasma filtration at the podocyte-generated slit diaphragm. With a spectrum of podocyte-expressed gene mutations causing chronic disease, an enhanced understanding of podocyte development and function to create relevant in vitro podocyte models is a clinical imperative. To characterize podocyte development, scRNA-seq was performed on human fetal kidneys, identifying distinct transcriptional signatures accompanying the differentiation of functional podocytes from progenitors. Interestingly, organoid-generated podocytes exhibited highly similar, progressive transcriptional profiles despite an absence of the vasculature, although abnormal gene expression was pinpointed in late podocytes. On transplantation into mice, organoid-derived podocytes recruited the host vasculature and partially corrected transcriptional profiles. Thus, human podocyte development is mostly intrinsically regulated and vascular interactions refine maturation. These studies support the application of organoid-derived podocytes to model disease and to restore or replace normal kidney functions.

Decoding the development of the human hippocampus

The hippocampus is an important part of the limbic system in the human brain that has essential roles in spatial navigation and the consolidation of information from short-term memory to long-term memory1,2. Here we use single-cell RNA sequencing and assay for transposase-accessible chromatin using sequencing (ATAC–seq) analysis to illustrate the cell types, cell linage, molecular features and transcriptional regulation of the developing human hippocampus. Using the transcriptomes of 30,416 cells from the human hippocampus at gestational weeks 16–27, we identify 47 cell subtypes and their developmental trajectories. We also identify the migrating paths and cell lineages of PAX6+ and HOPX+ hippocampal progenitors, and regional markers of CA1, CA3 and dentate gyrus neurons. Multiomic data have uncovered transcriptional regulatory networks of the dentate gyrus marker PROX1. We also illustrate spatially specific gene expression in the developing human prefrontal cortex and hippocampus. The molecular features of the human hippocampus at gestational weeks 16–20 are similar to those of the mouse at postnatal days 0–5 and reveal gene expression differences between the two species. Transient expression of the primate-specific gene NBPF1 leads to a marked increase in PROX1+ cells in the mouse hippocampus. These data provides a blueprint for understanding human hippocampal development and a tool for investigating related diseases.

Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy

With only a fraction of patients responding to cancer immunotherapy, a better understanding of the entire tumor microenvironment is needed. Using single-cell transcriptomics we chart the fibroblastic landscape during pancreatic ductal adenocarcinoma (PDAC) progression in animal models. We identify a population of carcinoma-associated fibroblasts (CAFs) programmed by transforming growth factor beta and expressing the leucine-rich repeat containing 15 (LRRC15) protein. These LRRC15+ CAFs surround tumor islets and are absent from normal pancreatic tissue. The presence of LRRC15+ CAFs in human patients was confirmed in >80,000 single-cells from 22 PDAC patients as well as immunohistochemistry on samples from 70 patients. Furthermore, immunotherapy clinical trials comprising over 600 patients across 6 cancer types revealed elevated levels of the LRRC15+ CAF signature correlated with poor response to anti-PD-L1 therapy. This work has important implications for targeting non-immune elements of the tumor microenvironment to boost responses of cancer patients to immune checkpoint blockade therapy.

Landscape and dynamics of single immune cells in hepatocellular carcinoma (Smart-seq2)

The immune microenvironment of hepatocellular carcinoma (HCC) is poorly characterized. Combining two single-cell RNA sequencing technologies, we produced transcriptomes of CD45 + immune cells for HCC patients from five immune-relevant sites: tumor, adjacent liver, hepatic lymph node (LN), blood, and ascites. A cluster of LAMP3 + dendritic cells (DCs) appeared to be the mature form of conventional DCs and possessed the potential to migrate from tumors to LNs. LAMP3 + DCs also expressed diverse immune-relevant ligands and exhibited potential to regulate multiple subtypes of lymphocytes. Of the macrophages in tumors that exhibited distinct transcriptional states, tumor-associated macrophages (TAMs) were associated with poor prognosis, and we established the inflammatory role of SLC40A1 and GPNMB in these cells. Further, myeloid and lymphoid cells in ascites were predominantly linked to tumor and blood origins, respectively. The dynamic properties of diverse CD45 + cell types revealed by this study add new dimensions to the immune landscape of HCC.

Landscape and dynamics of single immune cells in hepatocellular carcinoma (10X)

The immune microenvironment of hepatocellular carcinoma (HCC) is poorly characterized. Combining two single-cell RNA sequencing technologies, we produced transcriptomes of CD45 + immune cells for HCC patients from five immune-relevant sites: tumor, adjacent liver, hepatic lymph node (LN), blood, and ascites. A cluster of LAMP3 + dendritic cells (DCs) appeared to be the mature form of conventional DCs and possessed the potential to migrate from tumors to LNs. LAMP3 + DCs also expressed diverse immune-relevant ligands and exhibited potential to regulate multiple subtypes of lymphocytes. Of the macrophages in tumors that exhibited distinct transcriptional states, tumor-associated macrophages (TAMs) were associated with poor prognosis, and we established the inflammatory role of SLC40A1 and GPNMB in these cells. Further, myeloid and lymphoid cells in ascites were predominantly linked to tumor and blood origins, respectively. The dynamic properties of diverse CD45 + cell types revealed by this study add new dimensions to the immune landscape of HCC.

The Dynamic Transcriptional Cell Atlas of Testis Development during Human Puberty

The human testis undergoes dramatic developmental and structural changes during puberty, including proliferation and maturation of somatic niche cells, and the onset of spermatogenesis. To characterize this understudied process, we profiled and analyzed single-cell transcriptomes of ∼10,000 testicular cells from four boys spanning puberty and compared them to those of infants and adults. During puberty, undifferentiated spermatogonia sequentially expand and differentiate prior to the initiation of gametogenesis. Notably, we identify a common pre-pubertal progenitor for Leydig and myoid cells and delineate candidate factors controlling pubertal differentiation. Furthermore, pre-pubertal Sertoli cells exhibit two distinct transcriptional states differing in metabolic profiles before converging to an alternative single mature population during puberty. Roles for testosterone in Sertoli cell maturation, antimicrobial peptide secretion, and spermatogonial differentiation are further highlighted through single-cell analysis of testosterone-suppressed transfemale testes. Taken together, our transcriptional atlas of the developing human testis provides multiple insights into developmental changes and key factors accompanying male puberty.